(-2)(-4 )(- ) は、
(-2)×(-4 )×(- ) の × を省略しています。
数学では、
普通の書き方です。
初めて計算する子に、
(-2)(-4 )(- ) は、
かけ算の記号「×」を省略していると、
計算する前に教えます。
理解できたこの子は、
マイナスの数のかけ算として計算します。
答えの符号を決めるために、
(-2)(-4 )(- ) の「-」の数を数えます。
3個ですから、
答えの符号は、マイナス(-)です。
答えの符号を、マイナス(-)と決めたら、
(-2)(-4 )(- ) から、「-」を取って、
(2)(4 )( ) を計算します。
整数 2 を、分数 に、
帯分数 4 を、仮分数 に変えます。
こうすると、
(2)(4 )( )=××= と、
見慣れた分数のかけ算になります。
続いて、
途中で約分してから、掛けます。
××==3 です。
この子は、
元の計算式に、
このようなことを書きます。
それが、
(-2)(-4 )(- )=
-××=
-××=-=-3 です。
このように計算する力を持っているこの子から、
÷{( )(- )} の計算で、
「ここ、掛ける(×)?」と、
計算する前に聞かれます。
「分からない」ではありません。
「教えて」でもありません。
いきなり、
「ここ、掛ける(×)?」と聞きます。
つまり、
÷{( )(- )} の ( )(- ) の間に、
掛ける(×)が省略されていると見抜いています。
「大きく育ったなぁ」と、うれしくなります。
(基本 -185)、(分数 -063)